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Problems in Taxation
An Optimization Approach for Loss Offset Options

S. Schanz*, G. Schmidt** , H.-D. Dinh** and M. Kersch**

Abstract

We solve an optimization problem which arises in the German tax sys-
tem. Here losses in some period can be tranferred to other periods reducing
tax in these periods. Two variants of taxation can be applied. We formu-
late the problem as a mixed binary mathematical program and solve it via
branch and bound using binary search. Special cases of the problem can be
solved by fast polynomial algorithms.

1 Introduction

Decisions in business taxation do not exclusively focus on simple interpretation
of tax law. In contrast, tax payers increasingly face complex decision problems
in order to carry out optimal decisions for tax purposes. In this paper we focus
on tax losses as one specific area of optimization problems that arises in most
tax systems world wide. In detail we choose a problem that deals with Germany’s
income tax loss offset restrictions for individuals. Here losses in some period can
be transferred to the previous assessment period or future assessment periods
reducing tax in these periods.

Problems with options concerning loss offset restrictions in terms of opti-
mization do not appear separately. In fact, tax systems provide lots of options
that usually interact. The drawback is that all options have to be optimized si-
multaneously to achieve a global optimum. To meet that problem we expand the
basic problem of loss offset optimization and implement a further option in our
problem. The respective option deals with the assessment or flat rate taxation of
capital income.

The remainder of this paper is organized as follows: Chapter 2 deals with the
related literature of prior research in tax optimization problems as well as the op-
timization technique. In Chapter 3 we present the problem formulation that is
transferred into the mathematical programming formulation in Chapter 4. An

* Sebastian Schanz, Otto-von-Guericke University, Magdeburg, Germany, e-mail: sebas-
tian.schanz@ovgu.de

** Glinter Schmidt, University of Saarland, Saarbriicken, Germany and University of Cape Town,
Cape Town, Republic of South Africa, e-mail: gs@itm.uni-sb.de

**Hai Dung Dinh and Mike Kersch, Saarland University, Saarbriicken, Germany, e-mail:
hdd@itm.uni-sb.de and mk®@itm.uni-sb.de.



3 Problem 2

approach to solve the formulated program is discussed in Chapter 5 and an ex-
ample problem in Chapter 6 illustrates the developed algorithm. Chapter 7 con-
cludes.

2 Related Work

Prior research of tax related optimization problems is quite managable. The vast
majority of tax related literature of optimization problems concentrates on prob-
lems from a juridical point of view or from a macroeconomic perspective. The
distinctive juridical branch of literature is based on verbal description of prob-
lems in taxation. Indeed individual situations are analyzed. However, usually the
decision setting is restricted to a static situation.

Economists focus on formal optimization or empirical investigations in taxa-
tion. Basically, dynamic models are used. However, only from a macroeconomic
perspective e.g. in terms of implementing tax systems that cause minimal dis-
tortions! or cross border investigations that mainly derive optimal repatriation
strategies?. The individual decision setting is completely neglected. Another fo-
cus of research in the field of economics are distortions caused by asymetric tax-
ation of debt and equity.

Business taxation approaches optimization from an individual point of view.
Literature in this field is quite rare. Niemann (2006), Knirsch/Schanz (2008) and
Schanz (2008) investigate optimal repatriation amounts by applying a business
tax planning model. The results are based on heuristic approaches as tabu search
or scatter search.

To our knowledge there are no existing contributions that deal with technical
optimization of problems on the individual tax payers level except the contribu-
tions mentioned above.

3 Problem

Given: In each period t =1,2,..., T a tax payer earns exogenous cash flows and
endogenous capital yield. Cash inflow (less depreciation) and capital yield for
all periods are known in advance. Tax payments must be made on cash inflows
and capital yield in each period according to one or more given tax functions. In
case of a negative cash inflow (loss) in some period ¢ this can either be carried

1 E.g. see Sandmo (1976). International tax planning matters are discussed by Alworth (1988).
2 Eg. see Altshuler/Newlon/Randolph/William (1995), Desai/Foley/Hines (2001) and Alt-
shuler/Grubert (2003).
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backward to period ¢ — 1, which results in a tax refund in ¢, or carried forward to
periods ¢ +1,..., T, where future taxable income in # +1,..., T will be reduced.
Starting with some initial wealth W; the terminal wealth W; at the end of the
last period is the result of cash inflow plus capital yield minus tax payments in all
prior periods. In each period one can choose between two taxation variants:

(i) capital yield and cash inflow are added and taxed according to a tax func-
tion;

(ii) capital yield is taxed at a flat rate of r =0, 25; cash inflow is taxed according
to a tax function.

Question: Which taxation variant should be chosen in each period and which
amount of losses should be carried back in order to maximize terminal wealth at
the end of period T?

For periods ¢ we define:

(1) A;: cash inflow in period ¢
(2) B,: capital income in period ¢
(3) I;: taxable income in period ¢

(4.1) Taxfunction defined in Sec. 32a of the German income tax code (EStG)

0 for 0 < I < 8004
(912.17-a+1,400)- a for 8,005 < I < 13,469
f(={ (228.74-b+2,397)-b+1,038 for 13,470 < I < 52,881
0.42-1—8,172 for 52,882 < I < 250,730
0.45-1— 15,694 for I > 250,731

. __ (I-8,004) __ (I-13,469)
with a = 10,000 and b = 10,000

(4.2) Tax payment:
g(B;): 0,25-B,
f(A;+ B;): taxpayment on cash inflow and capital income calculated
using tax function f(.)
f(A;): tax payment on cash inflow calculated using tax function

Q)

g(B;): tax payment on capital yield using 25% flat rate
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(5) W, = f(S1;,82;): terminal wealth in period ¢

where
(6.1) S1, = f(A,+ B,)
(6.2) S2,=f(A;)+ g(B;)

W.l.o.g. we assume that B, = i - W,_; where i is a constant interest rate for
t=1,...,T

Here we concentrate on a T = 3 period problem with a single loss period; we
assume w.l.o.g.

(@) loss period is t = 2 such that loss carry backward to ¢ = 1 and loss carry
forward to t = 3 is possible;

(b) the value of depreciations is zero in each period

(c) cashinflowsin t =1 and ¢ =3 can take any positive value

In practical settings the problem is solved sequentially in two steps:
(1) calculate tax to be paid for t =1

(2) calculate possible tax payments for ¢ > 1 after considering loss shifting and
receive possible tax refund at the beginning of ¢ = 2.

The two step procedure is due to the fact that losses from ¢ = 2 and profits
from ¢ = 3 are not known when calculating tax for ¢ = 1.

Here we solve the problem assuming that all necessary data are known. We
calculate the tax for all periods ¢ = 1,2, 3 simultaneously.

Lemma: The terminal wealth of the simultaneous approach is never smaller
than this of the sequential one.

Proof: Terminal wealth for period 3 is calculated by

W= Wt (A+B)-) S

The starting wealth W and cash inflows A;, t = 1,...,3 are constants having
the same value for both approaches. B, and S;, t = 1,...,3 depend on x(2,1)
(respectively on x(2,3)). In the simultaneous approach the maximum amount
for Zle(Bt —S,)is found which maximizes terminal wealth. Thus the sequential
approach cannot find a higher terminal wealth than the simultaneous approach.
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4 Mathematical Programming Formulation
In this section we formulate a mathematical programm for the model according

to the principles of Schmidt (1999).
The following MP (1) — (3) describes the problem:

3 3
max (Wg =W+ AB, —Zst)
t=1 t=1

can be shortend to

max (i(Bt - St))

t=1

due to the Lemma in Section 3

S.t.
¥: € from {0, 1} (2.1)
x(t,t —1)>max{C;(1—-y;)-(AB; +y: - A )} (2.2)
x(t,t—1)<0 (3)
where
=(1-y,)-((912.17-a,+1,400)-a,)
+75:-(0.25- B, +((912.17 - a, +1,400) - a,)) 4.2)
=(1—-y,)-((228.74-b,+2,397)- b, +1,038)
+7y:-(0.25- B, +((228.74- b, 4+ 2,397)- b, + 1,038)) 4.3)
=(1—-y,)-(0.42-1, —8,172)+y,-(0.25- B, +(0.42- I, — 8,172)) (4.4)
=(1—-y,)-(0.45-1, —15,694)+y,-(0.25- B, +(0.45- I, — 15,694) (4.5)
I, —8,004
a, _U:—8004) (4.6)
10,000
I, —13,469
b, _U:—13,469) 4.7)
10,000

andfortr=1
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I; =(1-y,;) - max{AB; +x(t +1,1);0} +y; -max{A; +x(t +1,¢);0} (5.1)
I =0 (5.2)
Iiv2 =(1 = Yr42)) - max{A B y2)+ (1 — Yr+1))  (ABr4ny — x(£ + 1, 1)) (5.3)

+ Ve (A — x( + 1, 1)), 0}
+ Vet2)- max{Aqy2)+ (1 — Y1) - (ABany — x(t +1, 1))
+ Vi1 (Agny —x(2 +1,1));0}

where AB; = A, + B, C is some upper bound on possible loss carry back-
ward, y, is the taxation variant applied in period ¢ and x(, t —1) is the loss carry-
backward from period ¢ to period ¢ — 1.

5 Solving the Mathematical Program

If either taxation variant (i) or taxation variant (ii) is allowed for all periods it is
optimal to balance x(¢, t —1) and x(,  + 1) depending on interest rate i and cash
inflow A,_; and A; ;.

Theorem: For optimal balancing of x(z,t — 1) and x(z, t 4+ 1) in case of either
taxation variant (i) or (ii) we can use binary search to find the optimal solution.

Proof: Let L <in< x(t,t—1) < L <pax With L <.;, and L <.« be the minimum
and the maximum possible loss carry backward amount from period t to period
t —1. Less x(f,t — 1) increases tax payment in ¢ — 1 but decreases tax payment
in t 4+ 1; there is some optimal tradeoff between increase and decrease which
can be found by binary search for x(; ,_1) in the interval [L <pin, L < max]. L <pin
decreases x(¢, t —1) to a minimum and L <, increases x(¢, £ —1) to a maximum.
Since W(x) is a continuous function with a single increasing slope (reaching a
maximum) and a single decreasing slope as shown in Figure 1.

w(i)

Xi(t,r=1)
x*
i(t,t—1)

Fig. 1: Terminal wealth as a function of interest rate i
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Now we investigate the problem where both taxation variants (i) and (ii) are
possible in each period. Variant (ii) might help in two ways:

(1) in aloss period variant (ii) increases the amount of transferable loss at the
cost of 25%; if additional tax reduction by loss transfer is greater than this
cost it increases cost savings;

(2) in a non-loss period variant (ii) increases tax savings if the average tax is >
25%

The way to solve the general problem is to apply branch and bound to decide
on the binary decision variables representing the taxation variants and to apply
for each node binary search to find the optimal values of the real valued variable.
A general description of the branch and bound algorithm can be found in the
contribution of Lawler/Wood (1966). We calculate upper bounds for each node
by relaxing the binary variables y; to real valued variables. Thus the root node
represents a real valued MP formulation. On the first level one binary decision
variable is assumed and two are relaxed to real valued, on the second level two
binary decision variables are assumed and one is relaxed to be real valued; on the
third level all binary decision variables are fixed. For the T = 3 period problem
we have in the worst case six leaves (111), (112), (122), (222), (221), (211) of the
branching tree representing all possible decisions for combinations of taxation
variants related to periods 1, 2, and 3.

6 Example Problem
In this section we provide a numerical example based for the T = 3 problem to

demonstrate the search process.
Let the interest rate i = 0, 03; the initial wealth W, and cash flows A; be

Wy = 593,194

A; = 20,000
A, = -50,000
Az = 50,000

The application of the branch and bound algorithm is shown in Figure 2.
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11 (0?7
(0;1;1;-20,184)
653,664

12 (1?7
(1;0.389;1;-5,482)
653,608

13 (209)
(1;0;1;,-1,918)
653,546
[ A1 RNGY)
(0.217;1;1;-18,207)
653,681

3 14 219
(0.217;1;1;-18,207)

15 (220)
(1;1;0;,-2,440)
653,464

I 16 221)
(0.217;1;1;-18,207)

L (1;0;1;-1,918)

8
141 (210)
(1;1;0;-2,440)
653,464
IR 142 (211 1421 (011)
(0.217;1;1;-18,207) (0;1;1;-20,184)
653,681 653,664
161 (201) 1422 (111)
(1;1;1;-10,215)
653,546 653,282

Fig. 2: B&B for example problem

Table 1 illustrates the example problem showing

branch and bound tree.

the root solution of the

r 0 1 2 3
A, 20,000 ~50,000 50,000
B, 17,796 18,853 17,777
Vi 0.217 1 1
AB, 37,796 -31,147 67,777
x(t,t—1) 0 18,207 0
I, 15,727 0 18,207
a 0.772 ~0.800 1.020
b, 0.226 ~1.347 0.474
S, 2,556 4,713 6,669
W, 593,194 628,433 592,573 653,681

Tab. 1: Example problem and root solution
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t 0 1 2 3
A, 20,000 -50,000 50,000
B, 17,796 18,868 17,792
Vi 0 1 1
AB; 37,796 -31,132 67,792
x(t,t—1) 0 -20,184 0
I, 17,612 0 20,184
a; 0.961 -0.800 1.218
b, 0.414 -1.347 0.672
S; 2,070 4,717 7,199
W, 593,194 628,920 593,070 653,664

Tab. 2: Example problem with optimal solution

Table 2 shows the optimal solution with x(2,1) = —20.184 generated by the

branch and bound algorithm shown in Figure 2.

7 Conclusions

General problem with arbitrary number of periods can be solved along the same
line. The number of binary variables y increases to T and the number of real vari-
ables x increases to the number of loss periods. Moreover the objective function

has to be adopted to T periods.
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